Abstract

The rapid development of the nuclear power plant in China leads to increasing attention to the treatment of low-level radioactive wastewater (LLRW). One of possibilities is the application of inorganic adsorbent like potassium titanium hexacyanoferrate (PTH), which can exhibit the effective adsorption of cesium. In this paper, the PTH material was optimized by means of being loaded on magnetite substrate. The synthesized material (magnetic PTH, M-PTH), with a particle size of less than 100nm, can offer a high capacity and favorable kinetic performance, however, without difficulties of separation from the LLRW due to its magnetic characterizations. The batch experiments demonstrate that cesium sorption isotherm of M-PTH coincide well with Langmuir model. The calculated capacity amounts to 0.517mmol/g, approximately 1.5 times the capacity of zeolite materials. The sorption process follows the pseudo-second-order sorption model. In the initial phase the rate-controlling step is intraparticle diffusion. With the Cs accumulation on the particle surface, external diffusion performs an important role together with intraparticle diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.