Abstract

Acute lung injury (ALI) is characterized by uncontrolled inflammation, which can lead to respiratory distress syndrome and cause patient death. In this study, we sought to determine the role of sophoridine, a compound purified from sophora, in ALI. A mouse model of ALI was established by treating mice with LPS through nonexposed tracheal instillation. After LPS-induced mice were treated with sophoridine, LPS-induced alveolar wall thickening, alveolar interstitial inflammatory exudation and thickening, and the degree of pulmonary edema were found to be inhibited. Macrophages play an important role in inflammation, and in vitro experiments have demonstrated that sophoridine reduces the LPS-induced expression of inflammatory factors by macrophages, suggesting that sophoridine may inhibit lung inflammation in LPS-treated mice through reduces the secretion of inflammatory factors. Further, treatment with sophoridine up-regulated autophagy in macrophage cells in vitro and mouse lung tissues in vivo. LPS can bind to TLRs and activate the MyD88/NF-κB pathways, leading to increased inflammation in the pathogenesis of ALI. Our findings revealed that sophoridine down-regulated the expression of TLR4/MyD88/NF-κB and mTOR mRNA and protein in mouse pulmonary tissue. Collectively, these findings indicate that sophoridine may inhibit LPS-induced ALI by enhancing autophagy of macrophages and reducing inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.