Abstract

To probe the bioavailability of soot released into the atmosphere is pivotal to understanding their environmental impacts. Soot aerosol absorbs organic matter, creating a hot spot for biogeochemical transformation and the global carbon cycle. Soot primarily contains condensed aromatics chemically recalcitrant; however, oligotrophic microorganisms might use it as a nutritional source. This study investigated the influence of psychrotolerant bacterial consortia on soot. Significant increase in the bacterial biomass, reduction in water-insoluble organic carbon (OC) and elemental carbon (EC) in soot residues and increase in water-soluble OC in the filtrate signifies the use of soot as a carbon and nutritional source. The influence on morphology and composition of soot was reported using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy, and Energy Dispersive X-Ray analysis (EDX). The FTIR analysis showed significant variations in the pattern of soot spectra, suggesting degradation. Elemental analysis and EDX showed a reduction in carbon percentage. Besides, the reduction of optical density with incubation time signifies the OC and EC consumption. This study shows that soot can be a substrate and pivotal factor in the microbial food web. Nowadays, soot emission to the environment is growing; therefore, soot involvement in microbe-mediated processes should be closely focused.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.