Abstract

Tumor-specific drug delivery is a major challenge for the pharmaceutical industry. Nanocarrier systems have been widely investigated to increase and control drug delivery to the heterogeneous tumor microenvironment. Classically, the uptake of nanocarriers by solid tumor tissues is mainly mediated by the enhanced permeability and retention effect (EPR). This EPR effect depends on the tumor type, its location, the physicochemical properties of the carriers, and the blood perfusion of the tumoral lesions. The main goal of this study was to evaluate in vivo tumor uptake of micelle carriers, assisted by microbubble/ultrasound sonoporation. Micelles were tracked using bi-modal imaging techniques to precisely localize both the nanocarrier and its payload. Micelles were loaded with a near infrared fluorophore and radiolabeled with zirconium-89. Their pharmacokinetics, biodistribution and passive tumor targeting properties were evaluated in a subcutaneous glioblastoma (U-87 MG) mouse model using optical and PET imaging. Finally, accumulation and diffusion into the tumor micro-environment was investigated under microbubble-assisted sonoporation, which helped homogenize the delivery of the micelles. The in vivo experiments showed a good correlation between optical and PET images and demonstrated the stability of the micelles in biological media, their high and long-term retention in the tumors and their clearance through the hepato-biliary pathway. This study demonstrates that bi-modal imaging techniques are powerful tools for the development of new nanocarriers and that sonoporation is a promising method to homogenize nanomedicine delivery to tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.