Abstract

The results of investigations of the influence of main parameters (surfactant concentration and temperature) on the synthesis of silver nanoparticles (AgNPs) by the sonoelectrochemical method in polyvinylpyrrolidone (PVP) solutions by cyclic voltammetry (CVA) are presented. It is shown that the ultrasonic field (22 kHz) leads to an increase in the anodic and cathodic currents by ~30 %. A scheme of the AgNPs formation has been proposed, which includes the following main processes: 1) dissolution of sacrificial silver anodes at E = 0.2...1.0 V with the formation of [AgPVP]+ complex ions; 2) cathodic and sonochemical reduction of the latter to Ag(0); 3) formation of AgNPs. It has been established that with an increase in PVP concentration from 1 to 4 g·L-1, the anodic and cathodic currents decrease by 40–60 %. The formation rate of AgNPs also decreases. The growth of anodic and cathodic currents and the formation rate of nanoparticles in the range of 20…60 °C corresponds to the diffusion-kinetic action of the temperature factor. The CVA curves practically do not change in time, which indicates the stability of anodic and cathodic processes at prolonged sonoelectrochemical synthesis. The character of the UV-Vis spectra of AgNPs colloidal solutions in PVP with the 405…410 nm absorption maximum is the same in a wide range of nanoparticle concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.