Abstract

The authors have recently demonstrated the shear wave interference patterns created by two coherent vibration sources imaged with the vibration sonoelastography technique. If the two sources vibrate at slightly different frequencies omega and omega+deltaomega, respectively, the interference patterns move at an apparent velocity of (deltaomega/2omega)upsilon(shear), where upsilon(shear) is the shear wave speed. We name the moving interference patterns "crawling waves." In this paper, we extend the techniques to inspect biomaterials with nonuniform stiffness distributions. A relationship between the local crawling wave speed and the local shear wave velocity is derived. In addition, a modified technique is proposed whereby only one shear wave source propagates shear waves into the medium at the frequency omega. The ultrasound probe is externally vibrated at the frequency omega-deltaomega. The resulting field estimated by the ultrasound (US) scanner is proven to be an exact representation of the propagating shear wave field. The authors name the apparent wave motion "holography waves." Real-time video sequences of both types of waves are acquired on various inhomogeneous elastic media. The distribution of the crawling/holographic wave speeds are estimated. The estimated wave speeds correlate with the stiffness distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.