Abstract

Sonochemical degradation of dilute aqueous solutions of 2-, 3- and 4-chlorophenol and pentachlorophenol has been investigated under air or argon atmosphere. The degradation follows first-order kinetics in the initial state with rates in the range 4.5–6.6 μM min −1 under air and 6.0–7.2 μM min −1 under argon at a concentration of 100 μM of chlorophenols. The rate of OH radical formation from water is 19.8 μM min −1 under argon and 14.7 μM min −1 under air in the same sonolysis conditions. The sonolysis of chlorophenols is effectively inhibited, but not completely, by the addition of t-BuOH, which is known to be an efficient OH radical scavenger in aqueous sonolysis. This suggests that the main degradation of chlorophenols proceeds via reaction with OH radicals; a thermal reaction also occurs, although its contribution is small. The addition of appropriate amounts of Fe(II) ions accelerates the degradation. This is probably due to the regeneration of OH radicals from hydrogen peroxide, which would be formed from recombination of OH radicals and which may contribute a little to the degradation. The ability to inhibit bacterial multiplication of pentachlorophenol decreases with ultrasonic irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.