Abstract

Using ceramic concrete made from zirconia as an example we formulated conditions and established the main technological laws for obtaining highly porous ceramic concretes. We analyzed the composition and microstructure of the ceramic concrete from the point of view of the existence in the system of noncompensated shrinkage. It is shown that for ceramic concrete with a high bond shrinkage during drying and heat treatment, with the purpose of reducing the shrinkage stresses in the system, it is necessary to use multifraction (coarse, medium, and fine) fillers. We show the effectiveness of using, as one of the filler components, removable poreforming additive, based on foamed polystyrol. The optimum region of the grain-size distribution of the components was established; this comes within the true specific volumes in the structure of the shaped ceramic concrete and amounts to 20–30% bond, 20–25% fine (0.1–0.4 mm) and 25–40% coarse (5–10 mm) filler made from waste zirconia foamed ceramics, and 20–25% foamed polystrol (0.63–1.6 mm). We studied certain properties of the resulting materials with a porosity of 60–75% and a compressive strength of 5–20 MPa. Compared with other highly porous materials, for example, foamed ceramics, the highly porous ceramic concretes have technological advantages (much lower water capacity of the shaping system, reduced shrinkage in drying and firing) and also improved operating characteristics, for instance, thermal conductivity, thermal-shock resistance and volume constancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.