Abstract

Scheduling with learning effects has received growing attention nowadays. A well-known learning model is called “sum-of processing-times-based learning” in which the actual processing time of a job is a non-increasing function of the jobs already processed. However, the actual processing time of a given job drops to zero precipitously when the normal job processing times are large. Motivated by this observation, we propose a truncation learning model where the actual job processing time is a function which depends not only on the processing times of the jobs already processed but also on a control parameter. The use of the truncated function is to model the phenomenon that the learning of a human activity is limited. Under the proposed learning model, we show that some single-machine scheduling problems can be solved in polynomial time. In addition, we further provide the worst-case error bounds for the problems to minimize the maximum lateness and total weighted completion time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.