Abstract

Abstract Elementary borehole- and perforation-stability problems in friable clastic formations for unrestricted fluid flow between reservoir rock and underground opening are treated on the basis of linear poroelastic theory. Thermal stress effects caused by a temperature difference between reservoir and borehole fluids can be predicted from the mathematical similarity of poro- and thermoelasticity. A tension-failure condition applies for the prediction of hydraulic fracture initiation in a formation around injection wells. The resulting equations are partially well-known. Similarly, a uniaxial compression-failure condition should predict perforation failure leading to sand influx in production wells. The major difference between these situations is that, at sufficient depth of burial, the tensile strength of a friable rock mass has only a minor effect on the fracturing pressure level, but the actual value of the compressive strength plays a crucial role in the prediction of sand-influx conditions. Practical suggestions for resolving the latter are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.