Abstract

In this paper, we prove that any bi-harmonic map from a compact orientable Riemannian manifold without boundary [Formula: see text] to Riemannian manifold [Formula: see text] is necessarily constant with [Formula: see text] admitting a strongly convex function [Formula: see text] such that [Formula: see text] is a Jacobi-type vector field (or [Formula: see text] admitting a proper homothetic vector field). We also prove that every harmonic map from a complete Riemannian manifold into a Riemannian manifold admitting a proper homothetic vector field, satisfying some condition, is constant. We present an open problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.