Abstract

In this note we present some Pohozaev-type identities that have been recently established in a joint work with Paul Laurain and Tristan Riviere in the framework of half-harmonic maps defined either on the real line or on the unit circle with values into a closed n-dimensional manifold. Weak half-harmonic maps are defined as critical points of the so-called half Dirichlet energy. By using the invariance of the half Dirichlet energy with respect to the trace of the Mobius transformations we derive a countable family of relations involving the Fourier coefficients of weak half-harmonic maps. We also present a short overview of Pohozaev formulas in 2-D in connection with Noether's theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.