Abstract

The effects of body size and suspension density on filtration rates, assimilation efficiencies and respiration rates in the ribbed musselAulacomya ater (Molina) have been determined by means of short-term laboratory experiments. Filtration rates accelerate rapidly in response to increasing algal concentration up to approximately 10×106 cellsDunaliella primolecta l-1, beyond which a plateau is approached. Percentage increments are greatest in small individuals. Assimilation efficiencies are independent of body size, but decline rapidly with increasing ration to approach zero above 32×106 cells l-1. Increases in respiration rate accompany increments in filtration rate in all but the smallest size class tested. Filtration, assimilation efficiency and respiration measurements are used to calculate ingestion rations, assimilation rations and scope for growth for mussels of different sizes over a range of algal concentrations. Scope for growth, expressed as percentage change in body energy per day, is a declining function of body size, but larger individuals achieve their maximum growth rates at lower ration levels than smaller ones. Growth efficiency is independent of body size, and is maximal at 5×106 cells l-1, where 29 to 43% of ingested ration is converted into body energy. The applicability of these experimental results to natural ecosystems is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.