Abstract

Improving the training algorithm, determining near-optimal number of nonlinear principal components (NLPCs), extracting meaningful NLPCs, and increasing the nonlinear, dynamic, and selective processing capability of the standard autoassociative neural network are the objectives of this article that are achieved independently by some new refinements of the network structure and the training algorithm. In addition, three different topologies of the network are presented, which make it possible to perform local nonlinear principal component analysis. Performances of all methods are evaluated by a stock price database that demonstrates their efficiency in different situations. Finally, as it will be illustrated in the last section, the proposed structures can be easily combined together, which introduce them as efficient tools in a wide range of signal processing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.