Abstract

Summary We first provide a modified version of the proof in [3] that the Sorgenfrey line is T1. Here, we prove that it is in fact T2, a stronger result. Next, we prove that all subspaces of ℝ1 (that is the real line with the usual topology) are Lindel¨of. We utilize this result in the proof that the Sorgenfrey line is Lindel¨of, which is based on the proof found in [8]. Next, we construct the Sorgenfrey plane, as the product topology of the Sorgenfrey line and itself. We prove that the Sorgenfrey plane is not Lindel¨of, and therefore the product space of two Lindel¨of spaces need not be Lindel¨of. Further, we note that the Sorgenfrey line is regular, following from [3]:59. Next, we observe that the Sorgenfrey line is normal since it is both regular and Lindel¨of. Finally, we prove that the Sorgenfrey plane is not normal, and hence the product of two normal spaces need not be normal. The proof that the Sorgenfrey plane is not normal and many of the lemmas leading up to this result are modelled after the proof in [3], that the Niemytzki plane is not normal. Information was also gathered from [15].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.