Abstract
In this paper we obtain new results on multivariate dimension polynomials of differential field extensions associated with partitions of basic sets of derivations. We prove that the coefficient of the summand of the highest possible degree in the canonical representation of such a polynomial is equal to the differential transcendence degree of the extension. We also give necessary and sufficient conditions under which the multivariate dimension polynomial of a differential field extension of a given differential transcendence degree has the simplest possible form. Furthermore, we describe some relationships between a multivariate dimension polynomial of a differential field extension and dimensional characteristics of subextensions defined by subsets of the basic sets of derivations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.