Abstract

In this paper we consider properties and power expressions of the functions $$f:(-1,1)\rightarrow \mathbb{R }$$ and $$f_L:(-1,1)\rightarrow \mathbb{R }$$ , defined by $$\begin{aligned} f(x;\gamma )=\frac{1}{\pi }\int \limits _{-1}^1 \frac{(1+xt)^\gamma }{\sqrt{1-t^2}}\,\mathrm{d}t \quad \text{ and}\quad f_L(x;\gamma )=\frac{1}{\pi }\int \limits _{-1}^1 \frac{(1+xt)^\gamma \log (1+x t)}{\sqrt{1-t^2}}\,\mathrm{d}t, \end{aligned}$$ respectively, where $$\gamma $$ is a real parameter, as well as some properties of a two parametric real-valued function $$D(\,\cdot \,;\alpha ,\beta ) :(-1,1) \rightarrow \mathbb{R }$$ , defined by $$\begin{aligned} D(x;\alpha ,\beta )= f(x;\beta )f(x;-\alpha -1)- f(x;-\alpha )f(x;\beta -1),\quad \alpha ,\beta \in \mathbb{R }. \end{aligned}$$ The inequality of Turan type $$\begin{aligned} D(x;\alpha ,\beta )>0,\quad -1 0$$ is proved, as well as an opposite inequality if $$\alpha +\beta <0$$ . Finally, for the partial derivatives of $$D(x;\alpha ,\beta )$$ with respect to $$\alpha $$ or $$\beta $$ , respectively $$A(x;\alpha ,\beta )$$ and $$B(x;\alpha ,\beta )$$ , for which $$A(x;\alpha ,\beta )=B(x;-\beta ,-\alpha )$$ , some results are obtained. We mention also that some results of this paper have been successfully applied in various problems in the theory of polynomial approximation and some "truncated" quadrature formulas of Gaussian type with an exponential weight on the real semiaxis, especially in a computation of Mhaskar---Rahmanov---Saff numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.