Abstract

Bearings are one of the most omnipresent and vulnerable components in rotary machinery such as motors, generators, gearboxes, or wind turbines. The consequences of a bearing fault range from production losses to critical safety issues. To mitigate these consequences condition based maintenance is gaining momentum. This is based on a variety of fault diagnosis techniques where fuzzy clustering plays an important role as it can be used in fault detection, classification, and prognosis. A variety of clustering algorithms have been proposed and applied in this context. However, when the extensive literature on this topic is investigated, it is not clear which clustering algorithm is the most suitable, if any. In an attempt to bridge this gap, this paper reports some preliminary results of a work aiming at comparing four representative fuzzy clustering algorithms: fuzzy c-means (FCM), the Gustafson-Kessel (GK) algorithm, fuzzy c-means with a focal point (FCMFP), and fuzzy neighborhood density-based spatial clustering of applications with noise (FN-DBSCAN). The paper reports only results from the real-world bearing vibration benchmark CWRU data set. The comparison takes into account the quality of the generated partitions measured by the external quality, i.e., Rand index. The conclusions of the study are grounded in statistical tests of hypotheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.