Abstract

In this paper, we investigate the multiple attribute group decision making (MAGDM) problems with 2-tuple linguistic information. Firstly, motivated by the ideas of Choquet integral and Shapley index, we propose three 2-tuple linguistic aggregation operators called Shapley 2-tuple linguistic Choquet averaging operator, Shapley 2-tuple linguistic Choquet geometric operator and generalized Shapley 2-tuple linguistic Choquet averaging operator. Then we discuss some properties of these operators, such as idempotency, monotonicity, boundary and commutativity. Secondly, if the information about the weights of decision makers (DMs) and attributes is incompletely known, we build two models to determine the optimal fuzzy measures on DM set and attribute set, respectively. Furthermore, we develop a new method for multiple attribute group decision making under 2-tuple linguistic environment based on the proposed operators. Finally, we apply the developed MAGDM method to select the most desirable emergency alternative and the validity of the developed method is verified by comparing the evaluation results with those obtained from the existing 2-tuple correlated aggregation operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.