Abstract

AbstractIt is known that a necessary condition for the existence of a 1‐rotational 2‐factorization of the complete graph K2n+1 under the action of a group G of order 2n is that the involutions of G are pairwise conjugate. Is this condition also sufficient? The complete answer is still unknown. Adapting the composition technique shown in Buratti and Rinaldi, J Combin Des, 16 (2008), 87–100, we give a positive answer for new classes of groups; for example, the groups G whose involutions lie in the same conjugacy class and having a normal subgroup whose order is the greatest odd divisor of |G|. In particular, every group of order 4t+2 gives a positive answer. Finally, we show that such a composition technique provides 2‐factorizations with a rich group of automorphisms. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 237–247, 2010

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.