Abstract

We consider a family of conforming finite element schemes with piecewise polynomial space of degree $k$ in space for solving the wave equation, as a model for second order hyperbolic equations. The discretization in time is performed using the Newmark method. A new a priori estimate is proved. Thanks to this new a priori estimate, it is proved that the convergence order of the error is $h^{k}+\tau ^{2}$ in the discrete norms of $\mathcal {L}^{\infty }(0,T;\mathcal {H}^1(\Omega ))$ and $\mathcal {W}^{1,\infty }(0,T;\mathcal {L}^2(\Omega ))$, where $h$ and $\tau $ are the mesh size of the spatial and temporal discretization, respectively. These error estimates are useful since they allow us to get second order time accurate approximations for not only the exact solution of the wave equation but also for its first derivatives (both spatial and temporal). Even though the proof presented in this note is in some sense standard, the stated error estimates seem not to be present in the existing literature on the finite element methods which use the Newmark method for the wave equation (or general second order hyperbolic equations).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.