Abstract

Complex mechano-chemical interactions at material/solution interfaces under elevated temperatures are involved in the stress corrosion cracking (SCC) of structural materials in light water reactor environments. Elucidating the thermally activated processes of SCC is of great importance for the mechanistic understanding and quantitative predictions. Steady state stress corrosion crack growth rates have been measured and used to calculate apparent activation energies under various test conditions. The observed apparent activation energies have been analyzed, based on the concept that multiple sub-processes with different thermally activated rate-controlling steps contribute simultaneously to the SCC crack growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.