Abstract
We investigate the multiple attribute group decision making (MAGDM) problems in which the attribute values take the form of 2-tuple linguistic information. Motivated by the ideal of dependent aggregation [Xu, Z. S. (2006). Dependent OWA operators. Lecture Notes in Artificial Intelligence, 3885, 172–178], in this paper, we develop some dependent 2-tuple linguistic aggregation operators: the dependent 2-tuple ordered weighted averaging (D2TOWA) operator and the dependent 2-tuple ordered weighted geometric (D2TOWG) operator, in which the associated weights only depend on the aggregated 2-tuple linguistic arguments and can relieve the influence of unfair 2-tuple linguistic arguments on the aggregated results by assigning low weights to those “false” and “biased” ones and then apply them to develop some approaches for multiple attribute group decision making with 2-tuples linguistic information. Finally, some illustrative examples are given to verify the developed approach and to demonstrate its practicality and effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.