Abstract

AbstractHaglund et al. (Trans Am Math Soc 370(6):4029–4057, 2018) introduced their Delta conjectures, which give two different combinatorial interpretations of the symmetric function $$\Delta '_{e_{n-k-1}} e_n$$ Δ e n - k - 1 ′ e n in terms of rise-decorated or valley-decorated labelled Dyck paths. While the rise version has been recently proved (D’Adderio and Mellit in Adv Math 402:108342, 2022; Blasiak et al. in A Proof of the Extended Delta Conjecture, arXiv:2102.08815, 2021), not much is known about the valley version. In this work, we prove the Schröder case of the valley Delta conjecture, the Schröder case of its square version (Iraci and Wyngaerd in Ann Combin 25(1):195–227, 2021), and the Catalan case of its extended version (Qiu and Wilson in J Combin Theory Ser A 175:105271, 2020). Furthermore, assuming the symmetry of (a refinement of) the combinatorial side of the extended valley Delta conjecture, we deduce also the Catalan case of its square version (Iraci and Wyngaerd 2021).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.