Abstract

Recent work is discussed that throws light on synthetic, steric, and electronic aspects of NHC complexes as well as on outer sphere effects in their reactivity. The chemistry of the NHC ligand is much more complex than the more traditional phosphines and provides much greater possibilities for altering steric and electronic properties for tuning reactivity. In synthetic work the Lin Ag 2O method is shown to be inapplicable to the synthesis of abnormal NHCs bound via C-4(5) where the C2 position is blocked with CH 3, because Ag(I) oxidizes the CH 3 group to formate with formation of the normal C-2 bound Ag–NHC. Linker effects on the behavior of chelating NHCs depend on the linker locking the azole rings into a conformation that depends on linker length. This gives rise to different complexes being formed when different linker lengths are employed. The failure of M–NHC bonds to reversibly dissociate can prevent potentially chelating bis and tris NHC precursors from forming the desired products but instead being trapped in a kinetic nonchelate form. Imidazolium carboxylates prove to be synthetically useful in that they can act as excellent NHC transfer agents to a variety of transition metals. The Tolman electronic parameter of NHCs can be determined by a variety of experimental and computational methods. Anion dependent chemistry can give rise to a switching of the product of imidazolium salt metallation from normal (C-2) to abnormal (C-4(5)) forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.