Abstract

During the past few decades, substantial research has been carried out on start-up demonstration tests. In this paper, we study the class of binary start-up demonstration tests under a general framework. Assuming that the outcomes of the start-up tests are described by a sequence of exchangeable random variables, we develop a general form for the exact waiting time distribution associated with the length of the test (i.e., number of start-ups required to decide on the acceptance or rejection of the equipment/unit under inspection). Approximations for the tail probabilities of this distribution are also proposed. Moreover, assuming that the probability of a successful start-up follows a beta distribution, we discuss several estimation methods for the parameters of the beta distribution, when several types of observed data have been collected from a series of start-up tests. Finally, the performance of these estimation methods and the accuracy of the suggested approximations for the tail probabilities are illustrated through numerical experimentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.