Abstract
ABSTRACTThe main purpose of this paper is to investigate the strong approximation of the integrated empirical process. More precisely, we obtain the exact rate of the approximations by a sequence of weighted Brownian bridges and a weighted Kiefer process. Our arguments are based in part on the Komlós et al. (1975)'s results. Applications include the two-sample testing procedures together with the change-point problems. We also consider the strong approximation of the integrated empirical process when the parameters are estimated. Finally, we study the behavior of the self-intersection local time of the partial-sum process representation of the integrated empirical process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.