Abstract
Fe25Cr4Al and Fe25Cr2Al (wt.%) alloys were cyclically deformed in air at various total strain amplitudes. Four different structures were observed, in order of decreasing strain: ordinary dislocation cell structures in both alloys at about 1% total strain and above; and “maze” or “labyrinth” structures at intermediate strains, again for both alloys; however, at the lowest strain rates, a typical loop patch structure was found in the 2% aluminium alloy but a precursor to the maze (labyrinth) structure was found in the 4% alloy. That precursor structure seems to be the same as that observed by Mori et al. It would thus appear that the difference between the two alloys lies in the bypassing of the loop-patch structure in the 4% alloy, with, instead, direct construction of dipolar or multipolar walls. Thus the softening observed in the 2% alloy is due to the formation of the loop patches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.