Abstract

Recently, persistent homology analysis has been used to investigate phase structure. In this study, we apply persistent homology analysis to the QCD effective model with heavy quarks at finite imaginary chemical potential; i.e., the Potts model with the suitably tuned external field. Since we try to obtain a deeper understanding of the relationship between persistent homology and phase transition in QCD, we consider the imaginary chemical potential because the clear phase transition, which is closely related to the confinement-deconfinement transition, exists. In the actual analysis, we employ the point-cloud approach to consider persistent homology. In addition, we investigate the fluctuation of persistent diagrams to obtain additional information on the relationship between the spatial topology and the phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.