Abstract

In rat pituitary GH3 cells Ca2+ current through L-type channels is reduced by somatostatin. This modulation of channel activity by somatostatin receptors is mediated by a guanine nucleotide-binding regulatory protein (G protein). It is sensitive to pertussis toxin, indicating the involvement of a G(o)- or Gi-type G protein in this pathway. The identity of this G protein was determined by suppressing the expression of endogenous G proteins individually via intranuclear injection of antisense oligonucleotides. This method was applied to GH3 cells to screen several G protein alpha, beta and gamma subunits for their roles in the defined signal transduction pathway. The loss of somatostatin's modulating activity on the voltage-dependent Ca2+ channel after oligonucleotide injection revealed the involvement of G(o) alpha 2 beta 1 gamma 3 to the exclusion of other closely related subtypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.