Abstract

In this study, Ag hybrid BiPO4 (Ag/BiPO4) heterostructures were synthesized using a solvothermal method. The morphologies and optical properties of the Ag/BiPO4 heterostructures were drastically different from those of BiPO4 and were highly dependent on the AgNO3:BiPO4 weight percent during the synthesis. The three formulated heterostructures were evaluated for their photocatalytic degradation of methylene blue (MB) under UV light illumination; the 0.5%Ag/BiPO4 heterostructure was observed to result in 99% degradation of MB within 60min, a remarkably higher level of photodegradation activity than the levels caused by TiO2 and BiPO4. Furthermore, even after use for five cycles of MB degradation, the 0.5%Ag/BiPO4 heterostructure showed no observable loss in photodegradation activity and no change in XRD patterns, demonstrating its chemical and structural stability. According to the results of a systematic experimental investigation, the enhanced photodegradation activity of this Ag/BiPO4 heterostructure could be ascribed to the high position of its valence band and the highly efficient separation of photogenerated electrons and holes. Moreover, hydroxyl radicals and holes were found to be the major reactive species. Successful photodegradation of standard dye solutions, including acid blue 1, methyl orange, fast green, rhodamine B, rhodamine 6G, and MB, in real water samples was demonstrated with the 0.5%Ag/BiPO4 heterostructure, providing clear evidence of its utility for treating waste water containing organic dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.