Abstract
Zirconium dioxide (ZrO2) doped titanium dioxide (TiO2) spinous hollow microspheres were successfully prepared through a facile solvothermal method using sunflower pollen as bio-templates. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption–desorption isotherms and UV–Vis diffuse reflectance spectroscopy. It was found that the products have spinous microsphere morphology with an approximate diameter of 12 μm. The ZrO2 doped TiO2 hollow microspheres exhibited a higher photocatalytic activity in the degradation of Rhodamine B (RhB) in aqueous solutions under UV-light irradiation compared with TiO2 hollow microspheres and ZrO2-doped TiO2 particles. In particular, the removal of RhB followed pseudo-first-order kinetics, and 96.3% of RhB was degraded in 60 min under UV-light irradiation when ZrO2 doped TiO2 spinous hollow microspheres were used as the photocatalysts. Neutral and alkaline conditions were found to favor over acidic conditions for the photocatalytic degradation of RhB. Furthermore, scavenging experiments indicated that photogenerated holes (h+) and radicals (OH and O−2) were the main reactive species in the photocatalytic process using ZrO2 doped TiO2 hollow microspheres as the catalysts under UV light irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.