Abstract

The multicomponent rare-earth cerate (Y0.2La0.2Nd0.2Sm0.2Eu0.2)2Ce2O7 (5RE2Ce2O7) ceramics were successfully fabricated through solvothermal method and the following calcination process. The microstructure and phase composition of the as-obtained products were systematically characterized via SEM, TEM and XRD techniques. The results showed that the as-synthesised 5RE2Ce2O7 has a single-phase fluorite-type crystal structure with the particle size of approximately 200 nm. Furthermore, the as-synthesised 5RE2Ce2O7 demonstrated lower thermal conductivity (1.9–1.26 W m−1·K−1 at 25–1000 °C), higher thermal expansion coefficients (CTEs, 12.48 × 10−6 K−1 at 1000 °C), and outstanding mechanical properties including large Young's modulus (248.0 ± 0.35 GPa) and high fracture toughness (2.4 ± 0.21 MPam1/2). The excellent properties of the as-synthesised 5RE2Ce2O7 demonstrates its potential application as a new type of next-generation TBCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.