Abstract

In models of imperfect competition of deregulated electricity markets, the key task is to find the Nash equilibrium (NE). The approaches for finding the NE have had two major bottlenecks: computation of mixed strategy equilibrium and treatment of multiplayer games. This paper proposes a payoff matrix approach that resolves these bottlenecks. The proposed method can efficiently find a mixed strategy equilibrium in a multiplayer game. The formulation of the NE condition for a three-player game is introduced and a basic computation scheme of solving nonlinear equalities and checking inequalities is proposed. In order to relieve the inevitable burden of searching the subspace of payoffs, several techniques are adopted in this paper. Two example application problems arising from electricity markets and involving a Cournot and a Bertrand model, respectively, are investigated for verifying the proposed method. The proposed method outperforms a publicly available game theory software for the application problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.