Abstract

‎‎‎‎‎In this paper, we present a numerical technique to deal with the one-dimensional forward-backward heat equations. First, the physical domain is divided into two non-overlapping subdomains resulting in two separate forward and backward subproblems, and then a meshless method based on multiquadric radial basis functions is employed to treat the spatial variables in each subproblem using the Kansa’s method. We use a time discretization scheme to approximate the time derivative by the forward and backward finite difference formulas. In order to have adequate boundary conditions for each subproblem, an initial approximate solution is assumed on the interface boundary, and the solution is improved by solving the subproblems in an iterative way. The numerical results show that the proposed method is very useful and computationally efficient in comparison with the previous works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.