Abstract

Multi-stage stochastic programs are typically extremely large, and can be prohibitively expensive to solve on the computer. In this paper we develop an algorithm for multistage programs that integrates the primal-dual row-action framework with proximal minimization. The algorithm exploits the structure of stochastic programs with network recourse, using a suitable problem formulation based on split variables, to decompose the solution into a large number of simple operations. It is therefore possible to use massively parallel computers to solve large instances of these problems. The algorithm is implemented on a Connection Machine CM-2 with up to 32K processors. We solve stochastic programs from an application from the insurance industry, as well as random problems, with up to 9 stages, and with up to 16392 scenarios, where the deterministic equivalent programs have a half million constraints and 1.3 million variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.