Abstract
Quantified linear programs (QLPs) are linear programs with variables being either existentially or universally quantified. QLPs are convex multistage decision problems on the one side, and two-person zero-sum games between an existential and a universal player on the other side. Solutions of feasible QLPs are so-called winning strategies for the existential player that specify how to react on moves—fixations of universally quantified variables—of the universal player to certainly win the game. To find a certain best one among different winning strategies, we propose the extension of the QLP decision problem by an objective function. To solve the resulting QLP optimization problem, we exploit the problem’s hybrid nature and combine linear programming techniques with solution techniques from game-tree search. As a result, we present an extension of the nested Benders decomposition algorithm by the $$\alpha \beta $$ -heuristic and move-ordering, two techniques that are successfully used in game-tree search to solve minimax trees. We furthermore exploit solution information from QLP relaxations obtained by quantifier shifting. The applicability is examined in an experimental evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.