Abstract
In this study, we consider a scheduling environment with m ( m ≥ 1) parallel machines. The set of jobs to schedule is divided into K disjoint subsets. Each subset of jobs is associated with one agent. The K agents compete to perform their jobs on common resources. The objective is to find a schedule that minimizes a global objective function f 0 , while maintaining the regular objective function of each agent, f k , at a level no greater than a fixed value, e k ( f k ∈ { f k max , ∑ f k }, k = 0, ..., K ). This problem is a multi-agent scheduling problem with a global objective function . In this study, we consider the case with preemption and the case without preemption. If preemption is allowed, we propose a polynomial time algorithm based on a network flow approach for the unrelated parallel machine case. If preemption is not allowed, we propose some general complexity results and develop dynamic programming algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.