Abstract

In this paper, we study Markov fluid queues with multiple thresholds, or the so-called multi-regime feedback fluid queues. The boundary conditions are derived in terms of joint densities and for a relatively wide range of state types including repulsive and zero drift states. The ordered Schur factorization is used as a numerical engine to find the steady-state distribution of the system. The proposed method is numerically stable and accurate solution for problems with two regimes and 210 states is possible using this approach. We present numerical examples to justify the stability and validate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.