Abstract
We consider the solution of large-scale algebraic Riccati equations with numerically low-ranked solutions. For the discrete-time case, the structure-preserving doubling algorithm has been adapted, with the iterates for A not explicitly computed but in the recursive form Ak=Ak−12−Dk(1)Sk−1[Dk(2)]⊤, with Dk(1) and Dk(2) being low-ranked and Sk−1 being small in dimension. For the continuous-time case, the algebraic Riccati equation will be first treated with the Cayley transform before doubling is applied. With n being the dimension of the algebraic equations, the resulting algorithms are of an efficient O(n) computational complexity per iteration, without the need for any inner iterations, and essentially converge quadratically. Some numerical results will be presented. For instance in Section 5.2, Example 3, of dimension n=20209 with 204 million variables in the solution X, was solved using MATLAB on a MacBook Pro within 45 s to a machine accuracy of O(10−16).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.