Abstract

Solving optimal stopping problems by backward induction in high dimensions is often very complex since the computation of conditional expectations is required. Typically, such computations are based on regression, a method that suffers from the curse of dimensionality. Therefore, the objective of this paper is to establish dimension reduction schemes for large-scale asset price models and to solve related optimal stopping problems (e.g., Bermudan option pricing) in the reduced setting, where regression is feasible. The proposed algorithm is based on an error measure between linear stochastic differential equations. We establish optimality conditions for this error measure with respect to the reduced system coefficients and propose a particular method that satisfies these conditions up to a small deviation. We illustrate the benefit of our approach in several numerical experiments, in which Bermudan option prices are determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.