Abstract

The p-hub center problem has extensive applications in various real-world fields such as transportation and telecommunication systems. This paper presents a new risk aversion p-hub center problem with fuzzy travel times, in which value-at-risk (VaR) criterion is adopted in the formulation of objection function. For trapezoidal and normal fuzzy travel times, we first turn the original VaR p-hub center problem into its equivalent parametric mixed-integer programming problem, then develop a hybrid algorithm by incorporating genetic algorithm and local search (GALS) to solve the parametric mixed-integer programming problem. In our designed GALS, the GA is used to perform global search, while LS strategy is applied to each generated individual (or chromosome) of the population. Finally, we conduct two sets of numerical experiments and discuss the experimental results obtained by general-purpose LINGO solver, standard GA and GALS. The computational results show that the GALS achieves the better performance than LINGO solver and standard GA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.