Abstract

Presents a framework for efficiently solving logic formulations of combinatorial optimization problems using heuristic search techniques. In order to integrate cost, lower-bound and upper-bound specifications with conventional logic programming languages, we augment a constraint logic programming (CLP) language with embedded constructs for specifying the cost function and with a few higher-order predicates for specifying the lower and upper bound functions. We illustrate how this simple extension vastly enhances the ease with which optimization problems involving combinations of Min and Max can be specified in the extended language CLP* and we show that CSLDNF (Constraint SLD resolution with Negation as Failure) resolution schemes are not efficient for solving optimization problems specified in this language. Therefore, we describe how any problem specified using CLP* can be converted into an implicit AND/OR graph, and present an algorithm called GenSolve which can branch-and-bound using upper and lower bound estimates, thus exploiting the full pruning power of heuristic search techniques. A technical analysis of GenSolve is provided. We also provide experimental results comparing various control strategies for solving CLP* programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.