Abstract

Off-plane scattering of time-harmonic plane waves by a plane diffraction grating with arbitrary conductivity and general surface profile is considered in a rigorous electromagnetic formulation. Integral equations for conical diffraction are obtained involving, besides the boundary integrals of the single and double layer potentials, singular integrals, the tangential derivative of single-layer potentials. We derive an explicit formula for the calculation of the absorption in conical diffraction. Some rules that are expedient for the numerical implementation of the theory are presented. The efficiencies and polarization angles compared with those obtained by Lifeng Li for transmission and reflection gratings are in a good agreement. The code developed and tested is found to be accurate and efficient for solving off-plane diffraction problems including high-conductive gratings, surfaces with edges, real profiles, and gratings working at short wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.