Abstract

The classical Heron problem states: on a given straight line in the plane, find a point C such that the sum of the distances from C to the given points A and B is minimal. This problem can be solved using standard geometry or differential calculus. In the light of modern convex analysis, we are able to investigate more general versions of this problem. In this paper we propose and solve the following problem: on a given nonempty closed convex subset of ℝs, find a point such that the sum of the distances from that point to n given nonempty closed convex subsets of ℝs is minimal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.