Abstract
Plasma polymers deposited from n-heptylamine onto silicon wafers have been found to form a porous microstructure when immersed in water and other solvents, with pores of dimensions and densities that vary considerably between coatings deposited under different plasma conditions. This solvent-induced pore formation was found to correlate with the observed percentage of extractable material. With low radio frequency (rf) power inputs, the resultant softer coatings possess considerably more extractable material than coatings deposited at higher applied power levels. The porosity is thus proposed to result from the formation of voids created by the extraction of soluble low-molecular-weight polymeric material, which produces shrinkage stress that the coating, firmly attached to the substrate, cannot relieve by macroscopic contraction. The microscopic contraction of plasma polymer volume creates voids that appear to span the entire film thickness. The effect of aging plasma polymers in air was also investigated. For films deposited at low power it led to reduced extraction of soluble material and different pore morphology, whereas for films deposited at higher rf power levels, the extracted amounts and pore formation were the same for aged coatings. It was also found that the density of surface amine groups was lower for films deposited under the two lowest power settings, in contrast to the commonly held belief that the use of minimal applied rf power aids retention of functional groups. These porous plasma polymer coatings with surface groups suitable for further interfacial chemical immobilization reactions may be useful for various membrane and biotechnology applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.