Abstract

Understanding working principles and thermodynamics behind phase separations, which have significant influences on condensed molecular structures and their performances, can inspire to design and fabricate anomalously and desirably mechanoresponsive hydrogels. However, a combination of techniques from physicochemistry and mechanics has yet been established for the phase separation in hydrogels. In this study, a thermodynamic model is firstly formulated to describe solvent-aided phase and microphase separations in the hydrogels, which present significantly improved mechanoresponsive strengths. Flory–Huggins theory and interfacial energy equation have further been applied to model the thermodynamics of concentration-dependent and temperature-dependent phase separations. An intricately detailed phase map has finally been formulated to explore the working principle. The thermodynamic methodology of phase separations, combined with the constitutive stress–strain relationships, has a great potential to explore the working mechanisms in mechanoresponsive hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.