Abstract

We studied changes in speed of the flagellar rotary motor of Escherichia coli when tethered cells or cells carrying small latex spheres on flagellar stubs were shifted from H 2O to D 2O or subjected to changes in external pH. In the high-torque, low-speed regime, solvent isotope effects were found to be small; in the low-torque, high-speed regime, they were large. The boundaries between these regimes were close to those found earlier in measurements of the torque-speed relationship of the flagellar rotary motor (Berg and Turner, 1993, Biophys. J. 65:2201–2216; Chen and Berg, 2000, Biophys. J., 78:1036–1041). This observation provides direct evidence that the decline in torque at high speed is due primarily to limits in rates of proton transfer. However, variations of speed (and torque) with shifts of external pH (from 4.7 to 8.8) were small for both regimes. Therefore, rates of proton transfer are not very dependent on external pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.