Abstract

The aim of the present work was to study the effect of a solvent/water mixture on the structural characteristics of extracted lignin from Eucalyptus nitens, and to relate the functional groups and interunit linkages present in the lignin with the distribution of phenolic compounds obtained after its alkaline oxidation. The high content of β-O-4′ substructures linked to a S unit in organosolv lignins of E. nitens lignin could be linked to the high yield of syringaldehyde in its alkaline oxidation. Kraft lignin oxidation gives rise to lower content of syringaldehyde when compared with organosolv lignins. This might be due to the higher proportion of condensed structures, mainly β-β´ (∼42%) and spirodienone (∼14%). Fukui functions showed that the regions with higher probability for an electrophilic attack on lignin would be located on phenyl rings and on the phenolic –OH group (benzylic position), whereas nucleophilic attacks in some cases were located over the double bond and ring. This work contributed to a better description of the proposed oxidative depolymerization mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.