Abstract

Fabrication of surfactant-modified DNA thin films with high uniformity, specifically DNA–CTMA, has been well considered via drop-casting and spin-coating techniques. However, the fabrication of thin films with pure DNA has not been sufficiently studied. We characterize the uniformity of thin films from aqueous salmon DNA solutions mixed with ethanol, methanol, isopropanol, and acetone. Measurements of thickness and macroscopic uniformity are made via a focused-beam ellipsometer. We discuss important parameters for optimum uniformity and note what the effects of solvent modifications are. We find that methanol- and ethanol-added solutions provide optimal fabrication methods, which more consistently produce high degrees of uniformity with film thickness ranging from 20 to 200 nm adjusted by DNA concentration and the physical parameters of spin-coating methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.